Adaptive parallelization of strategies in agent based systems
نویسندگان
چکیده
C. Geiger ([email protected]), B. Kaltho ([email protected]) Heinz Nixdorf Institut, Fuerstenallee 11, 33102 Paderborn, Germany Abstract In this paper we present an approach for adaptive partitioning of strategies in agent oriented systems based on algorithmic skeletons [2]. This provides the user with parallel programming templates for modeling agent strategies and their e cient parallelization. Information present in these skeletons supports the decision for an e cient partition. First, we mention agent based modeling and our validation example taken from the eld of manufacturing. Types of strategies are described and the idea of skeletons is introduced. Then we present the concept of PARTITIONER, a meta agent which computes an adaptive parallelization based on the available knowledge provided by the used skeletons. Finally, rst implementation results are discussed and future research in this area is motivated.
منابع مشابه
Optimal adaptive leader-follower consensus of linear multi-agent systems: Known and unknown dynamics
In this paper, the optimal adaptive leader-follower consensus of linear continuous time multi-agent systems is considered. The error dynamics of each player depends on its neighbors’ information. Detailed analysis of online optimal leader-follower consensus under known and unknown dynamics is presented. The introduced reinforcement learning-based algorithms learn online the approximate solution...
متن کاملIntelligent multi-agent modeling of the interbank network and evaluation of the impact of regulatory policies
agent-based modeling is an emerging computational technique that makes it possible to simulate complex economic systems, including the banking network, with a bottom-up approach. In this paper, the country's banking network is simulated with an intelligent multi-agent modeling model and indicates that these agents behave based on the adaptive learning. This modeling has been done with the aim o...
متن کاملAdaptive Consensus Control for a Class of Non-affine MIMO Strict-Feedback Multi-Agent Systems with Time Delay
In this paper, the design of a distributed adaptive controller for a class of unknown non-affine MIMO strict-feedback multi agent systems with time delay has been performed under a directed graph. The controller design is based on dynamic surface control method. In the design process, radial basis function neural networks (RBFNNs) were employed to approximate the unknown nonlinear functions. S...
متن کاملAdaptive Distributed Consensus Control for a Class of Heterogeneous and Uncertain Nonlinear Multi-Agent Systems
This paper has been devoted to the design of a distributed consensus control for a class of uncertain nonlinear multi-agent systems in the strict-feedback form. The communication between the agents has been described by a directed graph. Radial-basis function neural networks have been used for the approximation of the uncertain and heterogeneous dynamics of the followers as well as the effect o...
متن کاملCOVID-19 Intervention Scenarios for a Long-term Disease Management
Background The first outbreak of coronavirus disease 2019 (COVID-19) was successfully restrained in many countries around the world by means of a severe lockdown. Now, we are entering the second phase of the pandemics in which the spread of the virus needs to be contained within the limits that national health systems can cope with. This second phase of the epidemics is expected to last until a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996